Frequency and force modulation atomic force microscopy: low-impact tapping-mode imaging without bistability
نویسنده
چکیده
Since the 1980s, atomic force microscopy (AFM) has rapidly developed into a versatile, high-resolution characterization technique, available in a variety of imaging modes. Within intermittent-contact tapping-mode, imaging bistability and sample mechanical damage continue to be two of the most important challenges faced daily by AFM users. Recently, a new double-control-loop tapping-mode imaging algorithm (frequency and amplitude modulation AFM, FAM-AFM) was proposed and evaluated within numerical simulations, demonstrating a reduction in the repulsive tip–sample forces and the absence of bistability. This article presents a much simpler algorithm, frequency and force modulation AFM (FFM-AFM), which requires only a single control loop and offers the same benefits as FAM-AFM. The concept is applied to calculate the cross-sectional scan of a carbon nanotube sample resting on a silicon surface, which is then compared to a previously reported image obtained in conventional amplitude-modulation tapping-mode, shown to be in agreement with the experimental result.
منابع مشابه
Sensitivity Analysis of Frequency Response of Atomic Force Microscopy in Liquid Environment on Cantilever's Geometrical Parameters
In this paper, the non-linear dynamic response of rectangular atomic force microscopy in tapping mode is considered. The effect of cantilever’s geometrical parameters (e.g., cantilever length, width, thickness, tip length and the angle between the cantilever and the sample's surface in liquid environment has been studied by taking into account the interaction forces. Results indicate that the r...
متن کاملThe effect of drive frequency and set point amplitude on tapping forces in atomic force microscopy: simulation and experiment.
In tapping mode atomic force microscopy (AFM), a sharp probe tip attached to an oscillating cantilever is allowed to intermittently strike a surface. By raster scanning the probe while monitoring the oscillation amplitude of the cantilever via a feedback loop, topographical maps of surfaces with nanoscale resolution can be acquired. While numerous studies have employed numerical simulations to ...
متن کاملFourier transformed atomic force microscopy: tapping mode atomic force microscopy beyond the Hookian approximation
The periodic impact force induced by the tip–sample contact in tapping mode atomic force microscopy (TM-AFM) gives rise to anharmonic oscillations of the sensing cantilever. These anharmonic signals can be understood with a model which goes beyond the common Hookian approximation: the cantilever is described as a multiple degree of freedom system. A theoretical analysis of the anharmonic signal...
متن کاملPhotothermal excitation for improved cantilever drive performance in tapping mode atomic force microscopy
Photothermal excitation is an alternative cantilever drive mechanism for tapping mode atomic force microscopy. It uses a power-modulated laser focused on the cantilever to directly drive its oscillation, producing cantilever tunes that match the thermal response almost perfectly. This enables quantitatively accurate AFM imaging and viscoelastic nanomechanical mapping in all environments. In add...
متن کاملStability and sensitivity analysis of periodic orbits in Tapping Mode Atomic Force microscopy - Decision and Control, 1998. Proceedings of the 37th IEEE Conference on
In this paper, the most widely used mode of atomic force microscopy imaging where the cantilever is oscillated at its resonant frequency is studied. It is shown that the amplitude and the sine of the phase of the orbit vary linearly with respect to the cantilever-sample distance. Experiments conducted on a silicon cantilever agree with the theory developed.
متن کامل